Perisynaptic Schwann cells of the vertebrate motor endplate bear modified cilia.

نویسندگان

  • Tilman Voigt
  • Wolfgang Dauber
  • Ulrike Kohler
چکیده

Perisynaptic Schwann cells (PSCs), descendants of the myelinating Schwann cells, cover the axon terminal of the vertebrate motor endplate of the skeletal muscle fiber. PSCs are assumed to support the function of the axon terminal. This function suggests a net material transport in the direction of the axon terminal. Morphologically it is to be expected that these cells have a cytoskeleton aligned to the axon terminal. Investigations clarifying this statement have not yet been undertaken. From previous investigations we know, however, that the PSCs have a microtubule-organizing center, which is a part of this cytoskeleton. The centrioles of the organizing center may also participate in the formation of a modified cilium structure whose function is unknown. In the present investigation, characteristic ultrastructural features of the modified cilium structure and its relationship to the Golgi apparatus and the axon terminal are presented. A function for the modified cilium structure is discussed.

منابع مشابه

Denervation of the motor endplate results in the rapid expression by terminal Schwann cells of the growth-associated protein GAP-43.

Developing and regenerating neurons express high levels of the growth-associated phosphoprotein GAP-43. This membrane protein is not confined to neurons, however, as a number of studies have demonstrated GAP-43 immunoreactivity in central and peripheral glia in vitro and in vivo. We have found that the Schwann cells overlying the terminal motor axon at adult rat skeletal muscle endplates, and t...

متن کامل

The Scaffolding Protein, Grb2-associated Binder-1, in Skeletal Muscles and Terminal Schwann Cells Regulates Postnatal Neuromuscular Synapse Maturation

The vertebrate neuromuscular junction (NMJ) is considered as a "tripartite synapse" consisting of a motor axon terminal, a muscle endplate, and terminal Schwann cells that envelope the motor axon terminal. The neuregulin 1 (NRG1)-ErbB2 signaling pathway plays an important role in the development of the NMJ. We previously showed that Grb2-associated binder 1 (Gab1), a scaffolding mediator of rec...

متن کامل

Localization of L-type Ca2+ channels at perisynaptic glial cells of the frog neuromuscular junction.

The presence of L-type Ca2+ channels at the frog neuromuscular junction (nmj) was studied by monitoring changes in intracellular Ca2+ evoked in presynaptic terminals and perisynaptic Schwann cells (PSCs) and by studying the distribution of Ca2+ channels using a monoclonal antibody directed against the alpha 2/delta subunit of L channels. L-type Ca2+ channel agonist and antagonist had no effect ...

متن کامل

Neuron-glia interactions: the roles of Schwann cells in neuromuscular synapse formation and function.

The NMJ (neuromuscular junction) serves as the ultimate output of the motor neurons. The NMJ is composed of a presynaptic nerve terminal, a postsynaptic muscle and perisynaptic glial cells. Emerging evidence has also demonstrated an existence of perisynaptic fibroblast-like cells at the NMJ. In this review, we discuss the importance of Schwann cells, the glial component of the NMJ, in the forma...

متن کامل

IP3 receptors and associated Ca2+ signals localize to satellite cells and to components of the neuromuscular junction in skeletal muscle.

Recently, we described an inositol 1,4,5-trisphosphate (IP3) signaling system in cultured rodent skeletal muscle, triggered by high K+ and affecting gene transcription (Powell et al., 2001). Now, in a study of adult rodent skeletal muscle, using immunocytology and confocal microscopy, we have found a high level of IP3 receptor (IP3R) staining in satellite cells, which have been shown recently t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Microscopy research and technique

دوره 63 3  شماره 

صفحات  -

تاریخ انتشار 2004